If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2=14y
We move all terms to the left:
7y^2-(14y)=0
a = 7; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·7·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*7}=\frac{0}{14} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*7}=\frac{28}{14} =2 $
| x+58.4=180 | | -88=-4(1+7m) | | 4x.13=x+8 | | 14+4y+13=0 | | x=50–2x+100 | | 5a+5=6a-1 | | 2x+55x+1;x=9 | | 4g+6g=50 | | 5x-29=3x-1 | | 3x–5=x+5 | | 9x9=60 | | 4=b+22/9 | | m4=51 | | 6x-20=6x.4 | | 4y–9+2=23+2 | | 5a+5+6a-1=180 | | 2/3(x9)=12 | | t-21=31 | | 2x–(-13)=33 | | 11a=a+70 | | 3x+21+25=110 | | -6+s=-10 | | -2d+5=-13 | | 12=x/7+3 | | 1/6+4x=2/3 | | 2x+5≠5x-4;x=9 | | 4(x+3)=2(2x-3) | | 3x2+3=63 | | 2x+5=5x-4;x=3 | | 5(2x+6)=4x-24 | | 150/250=x/100 | | 9y-15=5y+13 |